Start your programming journey with one of the most powerful and foundational languages — C. This comprehensive course is designed for absolute beginners as well as intermediate learners who want to build a solid understanding of programming using the C language. Whether you're preparing for college-level programming, cracking technical interviews, or planning to explore systems or embedded development, this course covers everything step-by-step. Through hands-on examples, real-world practice problems, and structured explanations, you’ll learn how to write clean and efficient C code — from your first printf() to advanced data structures and memory management.
A tree is a non-linear hierarchical data structure. It is widely used in applications like parsing expressions, indexing databases, and organizing hierarchical data such as file systems.
struct Node {
int data;
struct Node* left;
struct Node* right;
};
struct Node* createNode(int value) {
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;
newNode->left = newNode->right = NULL;
return newNode;
}
Traversal means visiting all the nodes in a specific order. There are three common types:
void inorder(struct Node* root) {
if (root != NULL) {
inorder(root->left);
printf("%d ", root->data);
inorder(root->right);
}
}
void preorder(struct Node* root) {
if (root != NULL) {
printf("%d ", root->data);
preorder(root->left);
preorder(root->right);
}
}
void postorder(struct Node* root) {
if (root != NULL) {
postorder(root->left);
postorder(root->right);
printf("%d ", root->data);
}
}
UdaanPath’s course structure could be visualized as a tree:
Next, we’ll move to Searching and Sorting Algorithms — core components for optimizing performance in C applications.