Quantitative Aptitude is one of the most crucial and scoring sections in all SSC examinations. This comprehensive course covers every topic from basic arithmetic to advanced mathematics in a structured and beginner-friendly way. Whether you're starting from scratch or revising for Tier 1 and Tier 2 exams, this course provides detailed concept explanations, shortcut tricks, solved examples, and plenty of practice questions aligned with the latest SSC exam pattern. From foundational concepts like Number System and Percentages to high-weightage topics like Algebra, Geometry, Mensuration, and Data Interpretation — every chapter is broken down with simplicity and clarity. 🎯 What You'll Learn: Topic-wise SSC syllabus coverage Formula sheets and memory hacks Smart techniques to improve speed & accuracy Previous year questions (PYQs) and trends Chapter-end quizzes and assignments This course is ideal for all SSC aspirants aiming for a strong grasp on Quant to boost their overall exam score.
Number System के बाद, HCF (Highest Common Factor) और LCM (Least Common Multiple) SSC की परीक्षाओं का एक और महत्वपूर्ण हिस्सा हैं। ये सिर्फ गणितीय अवधारणाएं नहीं हैं, बल्कि रोजमर्रा की जिंदगी में भी इनका उपयोग होता है, जैसे चीजों को समान समूहों में बांटना या किसी घटना के दोबारा एक साथ होने का समय निर्धारित करना।
Following the Number System, HCF (Highest Common Factor) and LCM (Least Common Multiple) are another crucial part of SSC exams. These are not just mathematical concepts but are also used in daily life, such as dividing items into equal groups or determining when an event will occur together again.
इस अध्याय में HCF और LCM की परिभाषा, उन्हें ज्ञात करने की विभिन्न विधियाँ, उनके बीच का संबंध, भिन्नों का HCF/LCM और उनके व्यावहारिक अनुप्रयोग शामिल हैं।
This chapter covers the definitions of HCF and LCM, various methods to find them, their relationship, HCF/LCM of fractions, and their practical applications.
HCF और LCM को समझने से पहले, गुणनखंड (Factors) और गुणज (Multiples) की अवधारणा को समझना महत्वपूर्ण है।
Before understanding HCF and LCM, it's important to grasp the concepts of Factors and Multiples.
HCF को GCD (Greatest Common Divisor) भी कहा जाता है।
HCF is also known as GCD (Greatest Common Divisor).
Example (उदाहरण): Find HCF of $36$ and $48$.
$36 = 2 \times 2 \times 3 \times 3 = 2^2 \times 3^2$
$48 = 2 \times 2 \times 2 \times 2 \times 3 = 2^4 \times 3^1$
Common prime factors are $2$ and $3$.
Lowest power of $2$ is $2^2$. Lowest power of $3$ is $3^1$.
HCF = $2^2 \times 3^1 = 4 \times 3 = 12$.
Example (उदाहरण): Find HCF of $36$ and $48$.
$48 \div 36$: Quotient $1$, Remainder $12$.
Now, divide $36$ by $12$: Quotient $3$, Remainder $0$.
The last divisor is $12$. So, HCF = $12$.
LCM दो या दो से अधिक संख्याओं का सबसे छोटा धनात्मक गुणज होता है।
The LCM of two or more numbers is the smallest positive number that is a multiple of all the given numbers.
Example (उदाहरण): Find LCM of $36$ and $48$.
$36 = 2^2 \times 3^2$
$48 = 2^4 \times 3^1$
Distinct prime factors are $2$ and $3$.
Highest power of $2$ is $2^4$. Highest power of $3$ is $3^2$.
LCM = $2^4 \times 3^2 = 16 \times 9 = 144$.
Example (उदाहरण): Find LCM of $36$ and $48$.
2 | 36, 48
2 | 18, 24
3 | 9, 12
| 3, 4
LCM = $2 \times 2 \times 3 \times 3 \times 4 = 144$.
यह दो संख्याओं के HCF और LCM के बीच एक बहुत ही महत्वपूर्ण संबंध है:
This is a very important relationship between the HCF and LCM of two numbers:
Product of two numbers = HCF $\times$ LCM
दो संख्याओं का गुणनफल = महत्तम समापवर्तक $\times$ लघुत्तम समापवर्त्य
If numbers are $A$ and $B$, then $A \times B = \text{HCF}(A,B) \times \text{LCM}(A,B)$.
Example (उदाहरण):
The HCF of two numbers is $12$ and their LCM is $144$. If one number is $36$, find the other number.
दो संख्याओं का HCF $12$ है और उनका LCM $144$ है। यदि एक संख्या $36$ है, तो दूसरी संख्या ज्ञात कीजिए।
Solution (समाधान):
Let the numbers be $A$ and $B$. We know $A \times B = \text{HCF} \times \text{LCM}$.
$36 \times B = 12 \times 144$
$B = (12 \times 144) / 36$
$B = 12 \times 4 = 48$.
अतः, दूसरी संख्या $48$ है।
भिन्नों का HCF और LCM ज्ञात करने के लिए विशेष नियम होते हैं।
There are specific rules for finding the HCF and LCM of fractions.
Example (उदाहरण): Find HCF and LCM of $1/2, 3/4, 5/6$.
Numerators (अंश): $1, 3, 5$. Denominators (हर): $2, 4, 6$.
HCF Calculation:
HCF of Numerators $(1, 3, 5) = 1$
LCM of Denominators $(2, 4, 6) = 12$
HCF of fractions = $1/12$.
LCM Calculation:
LCM of Numerators $(1, 3, 5) = 15$
HCF of Denominators $(2, 4, 6) = 2$
LCM of fractions = $15/2$.
प्रतियोगी परीक्षाओं में HCF और LCM से संबंधित प्रश्न सीधे नहीं पूछे जाते, बल्कि उनकी अवधारणाओं का उपयोग करते हुए वर्ड प्रॉब्लम (Word Problems) दिए जाते हैं।
In competitive exams, HCF and LCM related questions are not asked directly, but word problems are given that utilize their concepts.
अपनी समझ को मजबूत करने के लिए इन प्रश्नों को हल करें।
Solve these problems to strengthen your understanding.
इस अध्याय में HCF और LCM के महत्वपूर्ण पहलुओं को कवर किया गया है:
This chapter has covered the important aspects of HCF and LCM:
HCF और LCM के प्रश्न अक्सर SSC परीक्षाओं में पूछे जाते हैं। इन अवधारणाओं को अच्छी तरह से समझें और विभिन्न प्रकार के प्रश्नों का अभ्यास करें।
HCF and LCM questions are frequently asked in SSC exams. Understand these concepts thoroughly and practice various types of problems.